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Abstract
We study the temperature dependence of the mobility for elastic scattering in
quantum wells. Due to anomalous screening in two-dimensional systems the
mobility decreases linearly with temperature. The parameter for this linear
temperature dependence is a function of well width and of carrier density. It is
expressed in terms of the density dependence of the form factor for finite width
effects and by the local-field correction for many-body effects (exchange and
correlation). We argue that alloy-disorder scattering should lead to the linear
temperature dependence of the mobility.

1. Introduction

At low temperature the mobility in Si metal–oxide–semiconductor structures decreases
linearly with increasing temperature [1–6]. This behaviour has also been found in Si/SiGe
heterostructures for holes [7] and electrons [8]. The physical origin of this linear temperature
dependence is an anomalous screening effect in two-dimensional systems as found in numerical
calculations in [9]. An analytical expression for the temperature dependent mobility due
to charged impurity scattering and interface-roughness scattering and a linear temperature
dependence was derived in [10]. A peak mobility due to the interplay between weak localization
effects and the anomalous screening effect was predicted in [11] and found in experiments for
holes in Si/SiGe heterostructures [7]. So far this anomalous screening effect has only been
found experimentally in Si structures.

In order to show that this phenomenon is related to two-dimensional systems in
general it would be interesting to observe this behaviour in structures not containing Si.
We argued before that this anomalous screening effect is difficult to measure in remote
doped AlGaAs/GaAs heterostructures due to reduced backscattering in the case of remote
impurities [12].

In this paper we propose to measure the anomalous screening in GaInAs structures where
alloy-disorder scattering is the dominant scattering mechanism. Such a measurement would be

0953-8984/01/5011641+10$30.00 © 2001 IOP Publishing Ltd Printed in the UK 11641

http://stacks.iop.org/cm/13/11641


11642 A Gold

particularly interesting because, from the theoretical point of view, there exists a controversy
concerning the importance of screening for alloy-disorder scattering. Alloy-disorder scattering,
where screening was neglected, has been discussed in [13]. In [14] for heterostructures and
in [15] for quantum wells (QWs) it was argued that screening has to be taken into account in
order to study mobility. A confirmation of the linear temperature dependence for alloy-disorder
scattering would support the latter statement. Experimentally, mobility measurements [16,17]
of Ga0.47In0.53As QW structures indicate that the alloy-disorder scattering is the dominant
scattering mechanism in the large density regime [15].

The screening properties of a degenerate electron gas are usually calculated within the
random-phase approximation (RPA). We show in this paper that the improvement of the
RPA by taking into account many-body effects (exchange and correlation) via the local-field
correction (LFC) [18] is important on a qualitative level if the carrier density becomes small
(the Wigner–Seitz parameter rs becomes large). In [10] only exchange effects have been taken
into account for the LFC and the validity range of our theory was rs < 1. In this paper we also
take into account correlation effects and extent the validity range of our theory to the regime
of the strongly correlated electron gas.

Very recently, the study of the temperature dependence of the conductivity in two-
dimensional systems has attracted much attention [19–22]. Transport measurement of p-
type GaAs in [19] indicated a linear temperature dependence. The coefficient of the linear
temperature dependence was independent of the carrier density, as predicted by our theory [10]
for very small carrier density (rs → ∞). The spin-polarized two-dimensional electron gas in
SiGe generated by applying a parallel magnetic field, showed a mobility that was nearly linear
dependent on the temperature [20]. From measurements of the metallic phase of holes in SiGe
and a linear temperature dependence of the conductivity it was concluded that the system must
be considered as a Fermi liquid up to a Wigner–Seitz parameter of rs < 8 [21]. The large
value for rs in the samples used in [21] indicates that many-body effects are important. In
Si-MOS structures the temperature dependent screening was also considered to be important
in order to explain the experimental results of high-mobility samples away from the metal–
insulator transition [22]. Some anomalies of the temperature dependence in Si-MOS systems
and the connection with the metal–insulator transition have been reviewed in [23]. The recent
experimental results with samples having a large Wigner–Seitz parameter [19–22] demand a
more careful study of many-body effects. This study is performed in this paper for QWs.

The strictly linear temperature dependence of the conductivity [10] has been confirmed
recently for transport theory approaches [24,25]. In addition we find it interesting that recently
theoretical results appeared in the literature concerning the ‘leading temperature correction to
Fermi-liquid theory in two dimensions’ and a linear T -terms was claimed to be the leading
term [26].

The paper is organized as follows. The model and the theory are described in section 2. In
section 3 we present our results for the temperature dependence of the mobility. The discussion
is in section 4 and the conclusion in section 5.

2. Model and theory

We consider a two-dimensional electron gas in a QW of width L. We assume infinite barriers
and thus, penetration effects into the barriers are neglected. The two-dimensional electron
density N defines the Fermi wavenumber kF via N = gvk

2
F/2π . The effective Bohr radius

a∗ = εL/m
∗e2 is given in terms of the effective mass m∗ and the dielectric constant εL of

the host material. The Wigner–Seitz parameter rs is determined by the electron density as
r2

s = 1/πNa∗2. For Ga0.47In0.53As with m∗ = 0.041me and εL ∼ 13.3 we find a∗ = 172 Å.
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me is the electron mass in the vacuum. The effective Rydberg is Ry∗ = 3.15 meV. The
Coulomb interaction potential is given by [27] V (q) = 2πe2F(q, L)/εLq · F(q, L) is the
form factor due to the finite width effects [28]

F(q, L) = 1

4π2 + q2L2

[
3qL +

8π2

qL
− 32π4

q2L2

1 − exp(−qL)

4π2 + q2L2

]
. (1)

The random potential for alloy-disorder scattering was given in analytical form in [15] and
we refer to that paper. The parameter α characterizes the behaviour of the random potential
〈|U(q|2〉 for the small wavenumber: 〈|U(q → 0|2〉 ∝ q2α . It is important that the alloy-
disorder scattering potential is a short-range potential and the Fourier transform is independent
of the wavenumber q(α = 0).

In [10] we derived the analytical result for the temperature dependent conductivity σ(T )

for elastic scattering for kBT � εF as

σ(T ) = σ(0)

[
1 − C(rs, α)

kBT

εF
− D(rs, α)

(
kBT

εF

)3/2

+ O(T 2)

]
(2)

with

C(rs, α) = 2C(rs)C(α) (3a)

and

D(rs, α) = 2.45C(rs)
2C(α) (3b)

σ(0) is the conductivity at zero temperature. The temperature dependence described by
C(rs, α) and D(rs, α) depends on the density via the function C(rs) and on the scattering
mechanism via C(α). These two functions are given later.

The origin of this anomalous temperature dependence is the anomalous temperature
dependence of the static susceptibility X0(q, T ) which determines the screening function.
The anomalous temperature dependence of the static susceptibility, with X0(q � 2kF, T =
0) = ρF and X0(q > 2kF, T = 0) = ρF(1 − 4kF/q

2)1/2 [27], is the consequence of the
non-continuity of the first q-derivative at q = 2kF. ρF is the density of states. This behaviour
of X0(q, T = 0) at q = 2kF is related to Friedel oscillations and gives rise to the linear
T -dependence of the static conductivity [10].

The coefficient C(rs) is given by

C(rs) = F(2kF, L)[1 − G(2kF, L)]

F(2kF, L)[1 − G(2kF, L)] + kFa∗/gv
(4)

with kFa
∗ = [2/gv]1/2rs. Alloy-disorder scattering is characterized by α = 0 with

C(α = 0) = 8 ln[2]/3 = 1.848. (5)

The prefactor σ(0) in (2) for alloy-disorder scattering was calculated by various authors
using the approximation of non-interacting electrons [13] and of interacting electrons [14,15,
29, 30]. Analytical results have been given for σ(0) and these results can be used to compare
with the experimental data.

G(q,L) in (4) is the LFC. In [31] the LFC for two-dimensional systems (heterostruc-
tures and QWs) has been calculated within a sum-rule approach of the Singwi–Tosi–Land–
Sjölander (STLS) theory [32, 33]. The LFC in [31] is given as an analytical expression,
which is parametrized by two parameters C12(rs, L) and C22(rs, L). These two parameters
are calculated within the STLS approach. The sum-rule version [31] of the STLS-approach
is particularly interesting because it is numerically simple and can be applied to study width
effects in QWs and heterostructures. We use this approach to calculate the LFC.
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Figure 1. Coefficient C(rs, α = 0) versus the RPA parameter rs according to (3a) for a QW of
width L = a∗ as the solid curve with a∗ as the effective Bohr radius. The dashed and dotted curve
represents the Hubbard approximation and the RPA, respectively. In the inset we showC(rs, α = 0)
for large densities 0.1 < rs < 0.5. The valley degeneracy is gv = 1.

We would like to point out that our earlier study [10] was made within the Hubbard (H)
approximation GH(q) = q/[2gv(q

2 + k2
F)

1/2] [33] for the LFC where only the exchange is
taken into account. The width effects for the exchange are also neglected in the Hubbard
approximation. One finds GH(2kF) = 1/51/2gv = 0.45/gv. In the sum-rule approach [31]
both exchange and correlation effects are taken into account.

We note that for kF → 0 (rs → ∞) the coefficient C(rs) becomes independent of rs:
C(rs → ∞) = 1. This result is independent of the LFC and we conclude that the LFC
becomes unimportant for large rs (rs > 100). For kF → ∞ (rs → 0) the coefficient C(rs)

becomes C(rs → 0) = [1 − 0.45/gv)]/(kFa
∗/gv) and the many-body effects (exchange) are

important even for rs → 0 and cannot be neglected. This is an important topic because in the
numerical calculations of the temperature dependence made by Stern [9] many-body effects
in the screening function were neglected and the RPA was used.

We note that the coefficients C(rs, α = 0) and D(rs, α = 0) are independent of the model
parameters for the alloy-disorder scattering and only depend on the parameters of the electron
gas (density and width).

3. Results

The numerical results for C(rs, α = 0) versus rs are shown in figure 1 for L = a∗. The solid
curve is the result with the LFC in the sum-rule approximation. The dashed curve is the result
in Hubbard approximation and the dotted curve is the result with G(q,L) = 0 (RPA). Note
that we used a logarithmic scale. The finite LFC reduces C(rs, α = 0) in the given rs-range by
approximately a factor 2. For rs < 0.5 (inset) the correlation effects can be neglected and the
LFC is determined by the exchange effect. The arrow in figure 1 indicates the low-density limit
C(rs → ∞, α = 0) = 2C(α = 0) = 3.70. For rs < 20 we conclude that many-body effects
are very important and must be included in the calculation of the temperature dependence of
transport properties.
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Figure 2. Coefficient C(rs, α = 0) versus the RPA parameter rs according to (3a) for QWs of
width L = a∗/2, L = a∗ and L = 2a∗ with a∗ as the effective Bohr radius. The valley degeneracy
is gv = 1.

In figure 2 we have shown C(rs, α = 0) versus rs for different well widths. We conclude
that the well width does not give very large effects for rs > 3. However, for small rs values
the well width is a very important variable and this effect has to be taken into account. Width
effects are described by the parameter 2kFL, see (1). For small density (kF small) this parameter
is small and the width does not play an important role. However, in the high-density limit this
parameter becomes large and the width effects become dominant.

The numerical results for D(rs, α = 0) versus rs are shown in figure 3 for L = a∗.
The solid curve is the result within the full LFC in the sum-rule approximation. The dashed
curve is the result given by the Hubbard approximation and the dotted curve is the result
with G(q,L) = 0 (RPA). Note that we used a logarithmic scale. The finite LFC strongly
reduce D(rs, α = 0) by approximately a factor of 2. The arrow in figure 3 indicates
D(rs → ∞, α = 0) = 2.45C(α = 0) = 4.53. Numerical results for D(rs, α) have not
been given in [10] and our result given in figure 3 could help experimenters correctly estimate
the corrections to the linear T -term in the conductivity.

In figure 4 we showD(rs, α = 0) versus rs for the different well widthsL = a∗/2,L = a∗

and L = 2a∗. We conclude that a finite well width does not give a very large effect for rs > 3.
For smaller rs values the well width is an important variable as already found for C(rs, α = 0),
see figure 2. Comparing figure 2 with figure 4 we conclude thatC(rs, α = 0) ∼ 3D(rs, α = 0).

In order to discriminate the kBT/εF-term in (2) from the (kBT/εF)
3/2-term the condition

(kBT/εF)
1/2 � C(rs, α)/D(rs, α) must be fulfilled: with C(rs, α = 0)/D(rs, α = 0) = 3 we

find kBT/εF � 9. Therefore, we argue that structures with a large Fermi energy are necessary
to study the (kBT/εF)

3/2 term. The T 2 term in (2) contains in principle three contributions:
(i) the Sommerfeld term, (ii) the [C(rs, α)T ]2-contribution and (iii) an additional T 2-term
due to the expansion of the screening function. Without knowing the exact coefficient of the
T 2 term in (2) we suggest using the safer condition kBT � εF in order to determine the
coefficient C(rs, α) from the experimental results. In any case, the estimate kBT/εF � 9, by
using figures 2 and 4, indicates that it might be difficult to measure the (kBT/εF)

3/2-term of (2).
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Figure 3. Coefficient D(rs, α = 0) versus the RPA parameter rs according to (3b) for a QW of
width L = a∗ as the solid curve with a∗ as the effective Bohr radius. The dashed and dotted curve
represents the Hubbard approximation and the RPA, respectively. The valley degeneracy is gv = 1.

Figure 4. Coefficient D(rs, α = 0) versus the RPA parameter rs according to (3b) for QWs of
width L = a∗/2, L = a∗ and L = 2a∗ with a∗ as the effective Bohr radius. The valley degeneracy
is gv = 1.

4. Discussion

4.1. Theory

We used a model where the penetration effects into the barrier are neglected. Penetration
effects become important for small well widths and the results for alloy-disorder scattering are
given in [29,30]. A one-subband model with parabolic dispersion is used, and non-parabolicity
effects are neglected.

Our model for the alloy-disorder scattering applies if the two-dimensional electron gas is
present in the region of the alloy as in Ga0.47In0.53As/InP and Ga0.47In0.53As/Al0.48In0.52As.
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In Si/SiGe, where the electron gas is in the Si, alloy-disorder scattering can only be relevant
via penetration effects.

Our theory should also apply to the two-dimensional electron gas as realized in
AlGaN/GaN QWs. Recent mobility measurements indicate that the samples now become
well defined [34].

Our calculation of the mobility is made within the Born approximation including screening
beyond the RPA and the disorder effects must be small. This means that the measurements must
be made in the density regime where the multiple-scattering effects are small. At a critical
carrier density Nc a metal–insulator transition is expected [23] and in order for the Born
approximation to apply one must be away from the metal–insulator transition. A reasonable
estimate of the critical density for the metal–insulator transition is given by N

1/2
c a∗ = 0.3,

assuming non-remote charged impurity scattering, see also [15].
We have presented our results for C(rs, α = 0) and D(rs, α = 0) as a function of the

Wigner–Seitz parameter rs. The Wigner–Seitz parameter was chosen because our results are
not only valid for Si, but are also relevant for GaAs QWs or other QWs (GaN) if the mobility
is determined by a short-range scattering potential [12].

4.2. Other scattering mechanisms

We mention that the linear temperature dependence due to the anomalous screening
behaviour exists for ionized-impurity scattering (α = −1) and for interface-roughness
scattering (α = 0 for short-range scattering) [10]. Indeed, for short-range interface-
roughness scattering the coefficient for the anomalous temperature dependence is the same
as for alloy-disorder scattering. However, the prefactor σ(0) in (2) is different for the
two scattering mechanisms. For impurity scattering, where the impurities are located in
the QW (short-range random potential), the function C(rs, α = 0) and D(rs, α = 0)
in (2) have to be replaced by C(rs, α = −1) = 0.75C(rs, α = 0) and D(rs, α =
−1) = 0.75D(rs, α = 0). We conclude that the results given in figure 2 and 4 are
also relevant for impurity scattering. For remote doping (long-range random potential)
C(rs, α = −1) becomes very small due to the reduction in backscattering as discussed
in [12].

The measurements of the temperature dependent conductivity should be accompanied
by Shubnikov–de Haas measurements in order to specify the scattering mechanism. The
measurement of the transport scattering time τt (conductivity) and the single-particle relaxation
time τs (Shubnikov–de Haas) can give information on the dominant scattering mechanism. For
alloy-disorder scattering we expect τt/τs ∼ 0.7–1, depending on the carrier density [15].

4.3. Experimental

The mobility measurements of Ga0.47In0.53As QWs [16] covered the range 3 × 1010 cm−2 <

N < 1 × 1012 cm−2 (0.33 < rs < 1.9). The electron density range of the mobility
measurements in [17] was 8 × 1010 cm−2 < N < 2 × 1011 cm−2 (0.74 < rs < 1.2). The
many-body effects induced bandgap renormalization in Ga0.47In0.53As QWs was measured for
3×1011 cm−2 < N < 2×1012 cm−2 [35]. These estimates clearly show that GaxIn1−xAs QWs
are suitable to observe the anomalous screening of alloy-disorder scattering in two-dimensional
systems. However, from figure 1 it becomes clear that the rs values in the experiments [17] are
small and the coefficient C(rs, α = 0) will also be small. Therefore we suggest to search for
this linear temperature dependence in samples with a lower carrier density than used in [17]
but with N � Nc.
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The random potential (alloy-disorder scattering) in GaxIn1−xAs is proportional to
x(1 − x) : σ(0) ∝ 1/[x(1 − x)]. In strained QWs with x �= 0.47 the alloy-disorder scattering
can be strongly reduced for x → 0 and x → 1. While other scattering mechanisms
(background impurities) might become important for weak alloy-disorder scattering we argue
that systematic studies of the x-dependence of the mobility can be performed, as shown already
in experiment [36]. We mention that C(rs, α = 0) and D(rs, α = 0) are independent of x.

Alloy-disorder scattering was studied in theory for holes in Si/SixGe1−x QWs [37].
Experimental results for electrons in Si/SixGe1−x heterostructures have been reviewed in [8]
and also showed the linear temperature dependence, as reported earlier [7] for holes. For
high-mobility samples the low-temperature mobility was interpreted as interface-roughness
scattering [8, 38].

The linear temperature dependence of the mobility found for holes in GaAs [19] could
be an important contribution to show that this effect is not material dependent. However, the
density independence of the coefficient C(rs) found in experiment needs confirmation.

4.4. Comments

The temperature dependence of the mobility for alloy-disorder scattering in QWs was
calculated within a one-subband approximation. For QWs a simple estimate of the subband
energies for the subbands n = 1, 2, . . . gives εn = Ry∗(πna∗/L)2. We conclude that the
condition ε2 − ε1 = 3ε1 > εF must be fulfilled in order to have only the lowest subband
occupied. Due to the expansion in kBT/εF in (2) the temperature must be low: kBT � εF.
Therefore, we argue that structures with a large Fermi energy (small mass and, therefore, small
density of states) are in general better systems to study this anomalous temperature dependence.
Note, however, that with increasing density (decreasing rs) the coefficientsC(rs, 0) andD(rs, 0)
decrease.

Other sources of a unconventional temperature dependence of the conductivity are weak
localization effects and interaction anomalies as discussed in [23]. They give rise to a
logarithmic decrease of the conductivity with decreasing temperature. Together with the
linear increase as discussed in this paper a maximum of the conductivity was predicted [11]
and found in experiment [7].

Inelastic scattering effects due to acoustic phonons can also give rise to a linear contribution
for the resistance, for a review see [27]. We mention that the Bloch–Grüneisen (BG) law
predicts a T 5 dependence of the resistance at low temperatures T < TBG (TBG is the Bloch–
Grüneisen temperature) and a linear T dependence of the resistance for high temperatures
T > TBG, see [39] for AlGaAs/GaAs structures and [40] for AlGaN/GaN structures. Clearly,
the temperature range, where the linear temperature dependence due to the elastic scattering
can be discriminated from the linear temperature dependence due to inelastic scattering is
given by kBT � εF and T < TBG.

5. Conclusion

The temperature dependence of the mobility for elastic scattering in QWs was calculated.
Many-body effects (exchange and correlation) are shown to be quantitatively important in the
high and intermediate density regime and reduce the temperature dependence of the mobility.
The coefficients C(rs, α = 0) and D(rs, α = 0) are independent of model parameters of
the scattering process but depend on the electron density via rs. We argued that the alloy-
disorder is screened and the conductivity should show this linear temperature dependence.
The functions C(rs, α = 0) and D(rs, α = 0) are also relevant for the temperature dependence
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of the conductivity due to interface-roughness and impurity scattering. By taking many-body
effects into account the present work extends the validity range of our earlier work [10] to
small carrier density.

Our prediction for the temperature dependence for alloy-disorder scattering can be used to
study the screening (interaction) and many-body effects in the two-dimensional electron gas.
For large electron density we conclude that width effects and many-body effects are important.
For very small electron density we find that many-body effects dominate and that the width
effects are small.

The experimental finding of a linear temperature dependence of the mobility can, together
with our theory, be used to argue that the two-dimensional electron gas behaves as a
Fermi liquid.
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[22] Brunthaler G, Prinz A, Bauer G and Pudalov V M 2001 Phys. Rev. Lett. 87 096802

(Brunthaler G, Prinz A, Bauer G and Pudalov V M 2000 Preprint cond-mat/0007230)
[23] Abrahams E, Kravchenko S V and Sarachik M P 2001 Rev. Mod. Phys. 73 251
[24] Reizer M 1998 Phys. Rev. B 57 12 338
[25] Zala G, Narozhny B N and Aleiner I L 2001 Phys. Rev. B 64 214204
[26] Chitov G Y and Millis A J 2001 Phys. Rev. Lett. 86 5337
[27] Ando T, Fowler A B and Stern F 1982 Rev. Mod. Phys. 54 437
[28] Gold A 1987 Phys. Rev. B 35 723
[29] Gold A 1989 Z. Phys. B 74 53



11650 A Gold

[30] Mukhopadhyay S and Nag B R 1992 Appl. Phys. Lett. 60 2897
[31] Gold A and Calmels L 1993 Phys. Rev. 48 11 622

Gold A and Calmels L 1993 Solid State Commun. B 88 659
[32] Singwi K S, Tosi M P, Land R H and Sjölander A 1986 Phys. Rev. 176 589
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